Eigenvalues of Schrödinger Operators with Potential Asymptotically Homogeneous of Degree −2
نویسنده
چکیده
We strengthen and generalise a result of Kirsch and Simon on the behaviour of the function NL(E), the number of bound states of the operator L = ∆ + V in Rd below −E. Here V is a bounded potential behaving asymptotically like P (ω)r−2 where P is a function on the sphere. It is well known that the eigenvalues of such an operator are all nonpositive, and accumulate only at 0. If the operator ∆Sd−1 +P on the sphere S d−1 has negative eigenvalues −μ1, . . . ,−μn less than −(d−2)2/4, we prove that NL(E) may be estimated as NL(E) = log(E−1) 2π n ∑ i=1 √ μi − (d− 2)2/4 +O(1). Thus, in particular, if there are no such negative eigenvalues, then L has a finite discrete spectrum. Moreover, under some additional assumptions including the fact that d = 3 and that there is exactly one eigenvalue −μ1 less than −1/4, with all others > −1/4, we show that the negative spectrum is asymptotic to a geometric progression with ratio exp(−2π/ √ μ1 − 14 ).
منابع مشابه
Bound States of Discrete Schrödinger Operators with Super-critical Inverse Square Potentials
We consider discrete one-dimensional Schrödinger operators whose potentials decay asymptotically like an inverse square. In the super-critical case, where there are infinitely many discrete eigenvalues, we compute precise asymptotics of the number of eigenvalues below a given energy E as this energy tends to the bottom of the essential spectrum.
متن کاملNew Improvement in Interpretation of Gravity Gradient Tensor Data Using Eigenvalues and Invariants: An Application to Blatchford Lake, Northern Canada
Recently, interpretation of causative sources using components of the gravity gradient tensor (GGT) has had a rapid progress. Assuming N as the structural index, components of the gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational invariants of the GGT (I1 and ...
متن کاملHigh energy eigenfunctions of one-dimensional Schrödinger operators with polynomial potentials
For a class of one-dimensional Schrödinger operators with polynomial potentials that includes Hermitian and PT -symmetric operators, we show that the zeros of scaled eigenfunctions have a limit distribution in the complex plane as the eigenvalues tend to infinity. This limit distribution depends only on the degree of the polynomial potential and on the boundary conditions.
متن کاملNumber of Eigenvalues for a Class of Non-selfadjoint Schrödinger Operators
In this article, we prove the finiteness of the number of eigenvalues for a class of Schrödinger operators H = −∆ + V (x) with a complex-valued potential V (x) on R, n ≥ 2. If IV is sufficiently small, IV ≤ 0 and IV 6= 0, we show that N(V ) = N(RV )+k, where k is the multiplicity of the zero resonance of the selfadjoint operator−∆+RV and N(W ) the number of eigenvalues of −∆+W , counted accordi...
متن کاملGeneralized eigenfunctions of relativistic Schrödinger operators in two dimensions
Generalized eigenfunctions of the two-dimensional relativistic Schrödinger operator H = √ −∆ + V (x) with |V (x)| ≤ C〈x〉−σ, σ > 3/2, are considered. We compute the integral kernels of the boundary values R± 0 (λ) = ( √ −∆− (λ± i0))−1, and prove that the generalized eigenfunctions φ±(x, k) are bounded on R x × {k | a ≤ |k| ≤ b}, where [a, b] ⊂ (0,∞)\σp(H), and σp(H) is the set of eigenvalues of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008